Basic Immunology

Suppression of the immune response Suppressor mechanisms of immune functions

> 19th lecture April 10th, 2025 Zoltán Kellermayer

Main steps of the immune response

Recognition Molecular and cellular co-operations Activation **Differentiation and clonal expansion** Effector functions **Memory formation Suppression**

Factors involved in suppression

- 1. Antigen as the main regulator
- 2. Need for costimulation
- 3. Regulatory T cells
- 4. Regulation of the humoral immune response Regulatory B cells Antibody feedback Anti-idiotype antibodies

1. Antigen as the main regulator

Activates T and B cells

Antigen nature, dose, location influence the immune response

 $T_H 1 vs T_H 2$

Withdrawal/elimination of the antigen stops further activation

1. Antigen as the main regulator: influencing the cytokine balance

2. Need for costimulation

A Cell intrinsic inhibitory signaling CTLA-4 **B7 CD28** T cell Signal block \Rightarrow inhibition of T cell activation

B Blocking and removing B7 on APC T cell、 APC CD28 B7 CTLA-4 **Regulatory T cell Reduced B7**

costimulation \Rightarrow

inhibition of T cell

activation

CD28: constitutively expressed on T cells CTLA-4: expressed after activation higher affinity towards B7

Fig 15-6

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

2. Need for costimulation: Immune checkpoints

Nature Reviews | Cancer

3. Regulatory T cells (T_{reg}) are CD3+CD4+CD25^{hi}

3. Main functions of regulatory T cells

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Fig 15-7

3. Development of induced T_{reg} cells

3. T_{reg} suppression mechanisms

3. T_{reg} suppression mechanisms

3. Inhibitory cytokines secreted by T_{regs}

TGF β (Transforming Growth Factor β)

Inhibits classical (M1) macrophage activation Suppresses neutrophils Promotes T_{reg} differentiation (but under certain circumstances, also $T_H 17$!) Induces IgA isotype switch Promotes local tissue repair

IL-10

Inhibits IL-12 production by DCs and macrophages Inhibits expression of co-stimulatory molecules on DCs and macrophages Inhibits expression of class II MHC molecules on DCs and macrophages

3. T_{reg} overview

Phenotype: CD3⁺ CD4⁺ CD25⁺ FoxP3⁺

FoxP3 Mutation: IPEX Syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-linked)

Origin: Thymus (natural) or periphery (induced)

```
Suppression mechanism:

Cytokine secretion: IL-10, TGFβ

IL-10<sup>-/-</sup> mice: colitis

Blocking costimulation via CTLA-4

IL-2 "consumption" via IL-2Rα (CD25, high-affinity IL-2R)

cytolysis
```

4. B cell suppression

Regulatory B cells (B_{reg})

High levels of antibodies block further B cell activation

IgG + antigen immunocomplex inhibits B cell function by binding to FcγRIIb

(IgM + antigen immunocomplex promotes further B cell activation!)

4. Regulatory B cells

B_{reg} cells produce IL-10, IL-35, and TGF- β

Prohibit the expansion of pathogenic T cells and other pro-inflammatory lymphocytes

Promote T_{reg} cells

No definitive phenotype identified yet

4. Suppression via antibody feedback

FcγRIIb: inhibitory FcR (contains ITIM!)

Simultaneous binding of antigen + IgG leads to B cell inhibition

Fig 12-21

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

4. Anti-idiotype antibodies

Affinity maturation (somatic hypermutation) leads to formation of new structures capable of inducing an immune response

Antibodies will be directed against the idiotype of the original antibody

4. Anti-idiotype network

4. Functions of the anti-idiotype network

Suppression of B and T cells

Functional memory formation

Biological mimicry (insulin – anti-insulin – anti-anti-insulin)

+1a: Pathological suppression: Myeloid Derived Suppressor Cells (MDSCs)

Tumor microenvironment induces differentiation of MDSCs from various myeloid cells (neutrophils, monocytes, dendritic cells)

MDSCs suppress the anti-tumor immune response, promoting tumor growth

Yin K et al 2020. Front. Oncol. 10:610104. doi: 10.3389/fonc.2020.610104

+1b: Pathological suppression: Tumors inhibit T cells via immune checkpoint

Tumors express inhibitory molecules that lead to blockade of T cell activation (see slide #7)

Targeting these inhibitors is a promising area of tumor immunotherapy (Nobel Prize for in Physiology or Medicine, 2018, James P Allison and Tasuku Honjo)

Basic Immunology

Regional immunity Mucosa and skin associated immune system

20th lecture April 10th, 2025 Zoltán Kellermayer

Regional immune system

The collection of *immune cells* and *molecules* with specialized functions at a particular anatomic location

Gastrointestinal tract MALT: Mucosa Associated Lymphoid Tissue

Cutaneous immune system SALT: Skin Associated Lymphoid Tissue

Two types of body surfaces

Draining secondary lymphoid tissues...

Intestinal immune system: introduction

Surface: 200 m²

~5x10¹⁰ total lymphocytes (blood: 10¹⁰)

Huge amount of microbes: 10¹⁴

Harmless (beneficial) antigens: food + microbiome

Immune system has to find the small number of dangerous pathogens within the large amount of harmless antigens

Delicate balance between tolerance and attack

Overview of the intestinal immune system

Special structures Specialized epithelial cells **Migrating APCs** Peyer's patches IgA Effector cells: T cells, innate lymphoid cells (ILCs), NK cells, MAIT cells, macrophages, eosinophils, mast cells, granulocytes

Fig 14-1

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Lymphoid tissues in the gastrointestinal tract

Organized MALT (O-MALT)

Antigen recognition, activation of antigen specific lymphocytes, induction of effector and memory cells

"Programmed" lymphoid tissues: develop in utero, in defined locations at defined times

Peyer's patch, Tonsils

"Inducible" lymphoid tissues: develop/mature after birth, depending on antigenic stimulus

Cryptopatch - isolated lymphoid follicle spectrum

Diffuse MALT (D-MALT)

Effector tissue Memory cells, activated effector cells, plasma cells in a diffuse pattern

Programmed lymphoid tissues in the gastrointestinal tract: Peyer's patch

SED: Subepithelial dome FAE: Follicle associated epithelium

UM Mörbe et al 2021. Mucosal Immunology 14:793-802

Programmed lymphoid tissues in the gastrointestinal tract: tonsils

Normal tonsil

Inflamed tonsil

SILT (Solitary intestinal lymphoid tissues): inducible and dynamic components of the MALT

LTi+T cells/B cells/FDCs/GC reaction

Innate immunity of the intestinal immune system: epithelial cells

Epithelial cells

Goblet cells: constant mucus secretion mucus: inner (dense) and outer (less-dense) layer antigen sampling... Paneth cells: anti-microbial peptide secretion (defensins, REGIII)

M-cells: antigen transport

...all derived from Intestinal (epithelial) stem cells (ISC)

Epithelial cells express PRRs (TLRs, NLRs) in a tightly regulated manner PRR ligation can lead either to inflammation (against invading pathogens) or to tolerance (against commensal bacteria)

M cells transport antigens from the intestinal lumen to the underlying cells

Peyer's patch

M cell region

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

(Not antigen presentation!)

Goblet cells: not only mucus secretion...

GAP: Goblet cell associated Antigen Passages

Transport of luminal antigens to underlying mononuclear phagocytes

Gustafsson et al. eLife 2021;0:e67292. DOI: https://doi.org/10.7554/eLife.67292

Innate immunity of the intestinal immune system

Dendritic cells, Macrophages

Antigen presentation in mLNs

Usually promote tolerance (IL-10, TGFβ)

DCs: express retinal dehydrogenase \rightarrow secrete retinoic acid \rightarrow imprinting of guthoming molecules

Innate lymphoid cells

Lymphoid cells, but do not express antigen receptors

Secrete cytokines

- ILC1: NKs + non-cytotoxic ILC1s
- ILC2: immune response against helminths, allergy (IL-5, IL-13)
- ILC3: mucosal healing (IL-22), inflammation (IL-17a) (+ LTi cells)

Innate lymphoid cells (ILCs)

Klose CSN and Artis D (2016) Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nature Imm unology

Adaptive humoral immune response in the intestine

IgA is the main antibody in the mucosa

~2g IgA produced per day

Large amounts of TGFβ (produced by epithelial cells and DCs) induce IgA isotype switch Neutralizing immunity: prevents microbes/toxins from binding to/crossing the epithelium Within lymphoid follicles (PP, ILF) and dispersed throughout the lamina propria IgA: dimer, transported across the epithelium via *poly-Ig receptor* (=transcytosis)

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

IgA is transported across the mucosal epithelial cells

Fig 14-8

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Intestinal T cell responses

Location

Dispersed:

Intraepithelial lymphocytes: mainly CD8⁺ or γδ T cells Lamina propria lymphocytes: mainly CD4⁺ effector/memory cells Organized lymphoid tissues: Peyer's patches Isolated lymphoid follicles mainly CD4⁺ T cells (Tregs, follicular helper T cells)

Types of T cells

```
\begin{array}{c} \mathsf{T}_{\mathsf{H}}\mathsf{17} \; (\text{-}\textit{ILC3!}) \\ \text{produce IL-17, IL-22} \\ \text{important in immune response against certain (extracellular) pathogenic bacteria} \\ \mathsf{T}_{\mathsf{H}}\mathsf{2} \; (\text{-}\textit{ILC2!}) \\ \text{produce IL-4, IL-13} \\ \text{important in immune response against helminths} \\ \textbf{Regulatory T cells (Tregs)} \\ \text{produce TGF}\beta, \text{IL-10} \\ \text{important in inducing tolerance against non-pathogenic microbes} \end{array}
```

Homing to mucosal lymphoid tissues

	Endothelium	Leukocyte
Adhesion molecule	MAdCAM-1	α4β7
Chemokine	CCL25	CCR9
	CCL28	CCR10

Vedolizumab: mAb against $\alpha 4\beta 7$, used in inflammatory bowel diseases

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Intestinal microbiome

10¹⁴ cells (10x cells of the human body!)

Required for and regulate immunity of the intestine and also influence systemic immunity

Identification: 16S rRNA sequencing (specific for bacterial strains)

Extraintestinal consequences Rheumatoid arthritis Allergic diseases (asthma)

Example:

Clostridium difficile infection: usually caused by alteration of normal flora by antibiotic use Treatment: fecal transplantation (bacterial flora from healthy donors)

Other mucosal surfaces in the body

Features shared with the intestinal tract:

epithelial barrier, mucus and antimicrobial factors lymphoid tissues beneath the epithelium antigen sampling secretory IgA as prevention

Airways

Innate: surfactant protein; alveolar macrophages Adaptive: IgA, IgE (allergic reactions)

Genitourinary tract

Innate: epithelial layer, DCs (Langerhans cells) Adaptive: IgG Relevance: STDs, HIV pathogenesis

Cutaneous immune system

2m² ~2x10¹⁰ lymphocytes Physical barrier

Fig 14-9

(Sun)burns Microbes Traumas

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Cells of the cutaneous immune system

Keratinocytes

Physical barrier Cytokines: TNF, IL-1, IL-6, IL-18, IL-25, IL-33 (inflammation); IL-10 (regulation) Chemokines: CCL27 Growth factors: PDGF, FGF, GM-CSF Anti-microbial peptides: defensins, cathelicidins Activation: through PRRs (TLRs, NLRs)

Dendritic cells, macrophages

Mainly Langerhans cells Migrate to regional lymph nodes following phagocytosis of antigens Present antigens to T cells, imprint skin-homing properties

T cells

Intraepidermal: mainly CD8⁺ or $\gamma\delta$ T cells Dermal: CD4⁺ (T_H1, T_H2, T_H17, T_{reg}), mostly memory T cells

Homing to the skin

	Endothelium	Leukocyte
Adhesion molecule	E-selectin	CLA
	CCL17	CCR4
Chemokines	CCL1	CCR8
	CCL27	CCR10

Abbas, Lichtmann and Pillai. Cellular and Molecular Immunology. 8th edition. Copyright © 2015 by Saunders, an imprint of Elsevier, Inc

Dichotomy of the immune systems

